Skip to content

Vector Store API

Complete API reference for AsyncCockroachDBVectorStore and CockroachDBVectorStore.

langchain_cockroachdb.async_vectorstore.AsyncCockroachDBVectorStore

Bases: VectorStore

Async vector store using CockroachDB native VECTOR type and C-SPANN indexes.

embeddings property

Get embeddings model.

__init__(engine, embeddings, collection_name, *, schema='public', distance_strategy=DistanceStrategy.COSINE, content_column='content', embedding_column='embedding', metadata_column='metadata', id_column='id', namespace_column='namespace', namespace=None, hybrid_search_config=None, batch_size=100, retry_max_attempts=3, retry_initial_backoff=0.1, retry_max_backoff=5.0, retry_backoff_multiplier=2.0, retry_jitter=True)

Initialize async vector store.

Parameters:

Name Type Description Default
engine CockroachDBEngine

CockroachDBEngine instance

required
embeddings Embeddings

Embeddings model

required
collection_name str

Table name for this collection

required
schema str

Database schema (default: public)

'public'
distance_strategy DistanceStrategy

Distance metric for similarity (default: COSINE)

COSINE
content_column str

Name of content column (default: content)

'content'
embedding_column str

Name of embedding column (default: embedding)

'embedding'
metadata_column str

Name of metadata column (default: metadata)

'metadata'
id_column str

Name of ID column (default: id)

'id'
namespace_column str

Name of namespace column (default: namespace)

'namespace'
namespace str | None

Namespace for multi-tenancy isolation. When set, all operations are scoped to this namespace. Requires the table to have a namespace column (created with namespace_column param in ainit_vectorstore_table). Default: None (no namespace filtering, backward compatible).

None
hybrid_search_config HybridSearchConfig | None

Optional hybrid search configuration

None
batch_size int

Batch size for inserts - CockroachDB works best with smaller batches (default: 100)

100
retry_max_attempts int

Maximum retry attempts for operations (default: 3)

3
retry_initial_backoff float

Initial backoff delay in seconds (default: 0.1)

0.1
retry_max_backoff float

Maximum backoff delay in seconds (default: 5.0)

5.0
retry_backoff_multiplier float

Backoff multiplier (default: 2.0)

2.0
retry_jitter bool

Add randomization to backoff (default: True)

True

aadd_texts(texts, metadatas=None, ids=None, **kwargs) async

Add texts to vector store with automatic retry on failures.

Parameters:

Name Type Description Default
texts Iterable[str]

Texts to add

required
metadatas list[dict] | None

Optional metadata for each text

None
ids list[str] | None

Optional IDs for texts

None
**kwargs Any

Additional arguments (batch_size override supported)

{}

Returns:

Type Description
list[str]

List of IDs for added texts

aapply_vector_index(index, prefix_columns=None) async

Apply C-SPANN vector index.

Parameters:

Name Type Description Default
index CSPANNIndex

Index configuration

required
prefix_columns list[str] | None

Optional prefix columns for multi-tenant indexes

None

add_texts(texts, metadatas=None, **kwargs)

Sync wrapper - not implemented for async-only store.

adelete(ids=None, **kwargs) async

Delete documents by IDs.

Parameters:

Name Type Description Default
ids list[str] | None

Document IDs to delete

None
**kwargs Any

Additional arguments

{}

Returns:

Type Description
bool | None

True if successful

adrop_vector_index(index) async

Drop vector index.

Parameters:

Name Type Description Default
index CSPANNIndex

Index configuration

required

afrom_texts(texts, embedding, metadatas=None, engine=None, connection_string=None, collection_name='langchain_vectors', **kwargs) async classmethod

Create vector store from texts.

Parameters:

Name Type Description Default
texts list[str]

Texts to add

required
embedding Embeddings

Embeddings model

required
metadatas list[dict] | None

Optional metadata

None
engine CockroachDBEngine | None

CockroachDBEngine instance

None
connection_string str | None

Connection string (if engine not provided)

None
collection_name str

Table name

'langchain_vectors'
**kwargs Any

Additional arguments

{}

Returns:

Type Description
AsyncCockroachDBVectorStore

AsyncCockroachDBVectorStore instance

aget_by_ids(ids) async

Get documents by their IDs.

Parameters:

Name Type Description Default
ids Sequence[str]

List of IDs to retrieve.

required

Returns:

Type Description
list[Document]

List of Document objects found.

Max marginal relevance search.

Parameters:

Name Type Description Default
query str

Query text

required
k int

Number of results

4
fetch_k int

Number of candidates to fetch

20
lambda_mult float

Diversity parameter (0=max diversity, 1=max relevance)

0.5
filter dict | None

Metadata filter

None
**kwargs Any

Additional arguments

{}

Returns:

Type Description
list[Document]

List of documents

Search for similar documents.

Parameters:

Name Type Description Default
query str

Query text

required
k int

Number of results

4
filter dict | None

Metadata filter

None
**kwargs Any

Additional arguments

{}

Returns:

Type Description
list[Document]

List of documents

asimilarity_search_by_vector(embedding, k=4, filter=None, **kwargs) async

Return docs most similar to embedding vector.

Parameters:

Name Type Description Default
embedding list[float]

Embedding to look up documents similar to.

required
k int

Number of results to return.

4
filter dict | None

Metadata filter.

None
**kwargs Any

Additional arguments.

{}

Returns:

Type Description
list[Document]

List of documents most similar to the query vector.

asimilarity_search_with_score(query, k=4, filter=None, query_options=None, **kwargs) async

Search for similar documents with scores.

Parameters:

Name Type Description Default
query str

Query text

required
k int

Number of results

4
filter dict | None

Metadata filter

None
query_options CSPANNQueryOptions | None

C-SPANN query options

None
**kwargs Any

Additional arguments

{}

Returns:

Type Description
list[tuple[Document, float]]

List of (document, score) tuples

asimilarity_search_with_score_by_vector(embedding, k=4, filter=None, query_options=None, **kwargs) async

Search for similar documents by embedding vector.

Parameters:

Name Type Description Default
embedding list[float]

Query embedding vector

required
k int

Number of results

4
filter dict | None

Metadata filter

None
query_options CSPANNQueryOptions | None

C-SPANN query options

None
**kwargs Any

Additional arguments

{}

Returns:

Type Description
list[tuple[Document, float]]

List of (document, score) tuples

from_texts(texts, embedding, metadatas=None, **kwargs) classmethod

Sync wrapper - not implemented for async-only store.

get_by_ids(ids)

Get documents by their IDs (sync).

Parameters:

Name Type Description Default
ids Sequence[str]

List of IDs to retrieve.

required

Returns:

Type Description
list[Document]

List of Document objects found.

Sync wrapper - not implemented for async-only store.

langchain_cockroachdb.vectorstores.CockroachDBVectorStore

Bases: AsyncCockroachDBVectorStore

Sync wrapper for AsyncCockroachDBVectorStore using background event loop.

add_texts(texts, metadatas=None, ids=None, **kwargs)

Add texts to vector store (sync).

Parameters:

Name Type Description Default
texts Iterable[str]

Texts to add

required
metadatas list[dict] | None

Optional metadata

None
ids list[str] | None

Optional IDs

None
**kwargs Any

Additional arguments

{}

Returns:

Type Description
list[str]

List of IDs

apply_vector_index(index, **kwargs)

Apply vector index to the table (sync).

Parameters:

Name Type Description Default
index Any

Index configuration

required
**kwargs Any

Additional arguments

{}

delete(ids=None, **kwargs)

Delete documents (sync).

Parameters:

Name Type Description Default
ids list[str] | None

Document IDs

None
**kwargs Any

Additional arguments

{}

Returns:

Type Description
bool | None

True if successful

from_texts(texts, embedding, metadatas=None, engine=None, connection_string=None, collection_name='langchain_vectors', **kwargs) classmethod

Create from texts (sync).

Parameters:

Name Type Description Default
texts list[str]

Texts to add

required
embedding Embeddings

Embeddings model

required
metadatas list[dict] | None

Optional metadata

None
engine CockroachDBEngine | None

CockroachDBEngine instance

None
connection_string str | None

Connection string

None
collection_name str

Table name

'langchain_vectors'
**kwargs Any

Additional arguments

{}

Returns:

Type Description
CockroachDBVectorStore

CockroachDBVectorStore instance

MMR search (sync).

Parameters:

Name Type Description Default
query str

Query text

required
k int

Number of results

4
fetch_k int

Candidate pool size

20
lambda_mult float

Diversity parameter

0.5
filter dict | None

Metadata filter

None
**kwargs Any

Additional arguments

{}

Returns:

Type Description
list[Document]

List of documents

Search for similar documents (sync).

Parameters:

Name Type Description Default
query str

Query text

required
k int

Number of results

4
filter dict | None

Metadata filter

None
**kwargs Any

Additional arguments

{}

Returns:

Type Description
list[Document]

List of documents

similarity_search_by_vector(embedding, k=4, filter=None, **kwargs)

Return docs most similar to embedding vector (sync).

Parameters:

Name Type Description Default
embedding list[float]

Embedding to look up documents similar to.

required
k int

Number of results to return.

4
filter dict | None

Metadata filter.

None
**kwargs Any

Additional arguments.

{}

Returns:

Type Description
list[Document]

List of documents most similar to the query vector.

similarity_search_with_score(query, k=4, filter=None, query_options=None, **kwargs)

Search with scores (sync).

Parameters:

Name Type Description Default
query str

Query text

required
k int

Number of results

4
filter dict | None

Metadata filter

None
query_options CSPANNQueryOptions | None

Query options

None
**kwargs Any

Additional arguments

{}

Returns:

Type Description
list[tuple[Document, float]]

List of (document, score) tuples

Key Methods

Adding Documents

Method Async Description
aadd_texts() Add text documents
add_texts() - Sync wrapper
aadd_documents() Add Document objects
add_documents() - Sync wrapper

Searching

Method Async Description
asimilarity_search() Search by text
similarity_search() - Sync wrapper
asimilarity_search_with_score() Search with scores
asimilarity_search_by_vector() Search by vector
amax_marginal_relevance_search() MMR search

Index Management

Method Async Description
aapply_vector_index() Create C-SPANN index
apply_vector_index() - Sync wrapper
adrop_vector_index() Drop index
drop_vector_index() - Sync wrapper

Deleting

Method Async Description
adelete() Delete documents
delete() - Sync wrapper

Examples

See Vector Store Guide for comprehensive examples.